52 research outputs found

    Transport von Dieselruß durch Wasser in gestörten und ungestörten Böden - Resultierende, kleinskalige Verteilung und Nachweismethoden

    Get PDF
    Durch den Diesel-Kfz-Verkehr gelangen jährlich ca. 1,8 g Ruß/km in straßennahe Böden. Ruß enthält hohe Gehalte an PAK und ist aufgrund seiner Sorptionseigenschaften gleichzeitig Senke für weitere hydrophobe Schadstoffe. Es ist daher zu vermuten, dass derartige Schadstoffe prioritär mit dem Ruß transportiert werden. Zur Verlagerung bzw. Retention von Ruß in Böden liegen jedoch kaum Informationen vor. Ziel dieser Arbeit war es daher, den Transport von Ruß in aggregierten bzw. homogenisierten Böden unterschiedlichen Stoffbestandes mit Hilfe von Säulenperkolationsexperimenten zu bestimmen. Zur Ermittlung des Durchbruchs bzw. der Retention des Rußes wurden DOC und DON im Perkolat sowie PAK-Gehalte in unterschiedlichen Bodentiefen bestimmt. Die resultierende räumliche Verteilung des Rußes in den Bodensäulen und Porenräumen wurde mittels bildgebender Verfahren untersucht. Dies erfolgte zum einem unter Verwendung einer Hyperspektralkamera (Neo HySpex VNIR-1600) und Maximum Likelihood Classification (MLC) sowie autoPartial Least Squares Regression (aPLSR) als Auswertungsmethoden. Die Identifizierung des Rußes erfolgte durch konfokale Raman-Imaging Mikroskopie. Die Ergebnisse zeigen, dass Ruß vorrangig an der Bodenoberfläche ausgefiltert wird, wo er potentiell einem Abtrag durch runoff, Auswehung, etc. unterliegt. Eine Tiefenverlagerung erfolgt über Makroporenräume als präferentielle Fließwege

    Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data

    Full text link
    Precise knowledge of fuel conditions is important for predicting fire hazards and simulating fire growth and intensity across the landscape. We present a methodology to retrieve and map forest canopy fuel and other forest structural parameters using small-footprint full-waveform airborne light detection and ranging (LiDAR) data. Full-waveform LiDAR sensors register the complete returned backscattered signal through time and can describe physical properties of the intercepted objects. This study was undertaken in a mixed forest dominated by Douglas-fir, occasionally mixed with other conifers, in north-west Oregon (United States). We extracted two sets of LiDAR metrics using pulse detection and waveform modelling and then constructed several predictive models using forward stepwise multiple linear regression. The resulting models explained ~80% of the variability for many of the canopy fuel and forest structure parameters: aboveground biomass (R2 = 0.84), quadratic mean diameter (R2 = 0.82), canopy height (R2 = 0.79), canopy base height (R2 = 0.78) and canopy fuel load (R2 = 0.79). The lowest performing models included basal area (R2 = 0.76), stand volume (R2 = 0.73), canopy bulk density (R2 = 0.67) and stand density index (R2 = 0.66). Our results indicate that full-waveform LiDAR systems show promise in systematically characterising the structure and canopy fuel loads of forests, which may enable accurate fire behaviour forecasting that in turn supports the development of prevention and planning policies.This paper was developed as a result of two mobility grants funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering (TEE Project) and the Generalitat Valenciana (BEST/2012/235). The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation in the framework of the project CGL2010-19591/BTE. In addition, the authors thank the Panther Creek Remote Sensing and Research cooperative program for the data provided for this research, Jim Flewelling (Seattle Biometrics) and George McFadden (Bureau of Land Management) for their help in data availability and preparation.Hermosilla Gómez, T.; Ruiz Fernández, LÁ.; Kazakova, AN.; Coops, N.; Moskal, LM. (2014). Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire. 23(2):224-233. https://doi.org/10.1071/WF13086S224233232Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. doi:10.1109/tac.1974.1100705Andersen, H.-E., McGaughey, R. J., & Reutebuch, S. E. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94(4), 441-449. doi:10.1016/j.rse.2004.10.013Arroyo, L. A., Pascual, C., & Manzanera, J. A. (2008). Fire models and methods to map fuel types: The role of remote sensing. Forest Ecology and Management, 256(6), 1239-1252. doi:10.1016/j.foreco.2008.06.048Ashworth, A., Evans, D. L., Cooke, W. H., Londo, A., Collins, C., & Neuenschwander, A. (2010). Predicting Southeastern Forest Canopy Heights and Fire Fuel Models using GLAS Data. Photogrammetric Engineering & Remote Sensing, 76(8), 915-922. doi:10.14358/pers.76.8.915Buddenbaum, H., Seeling, S., & Hill, J. (2013). Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. International Journal of Remote Sensing, 34(13), 4511-4524. doi:10.1080/01431161.2013.776721Chuvieco, E., & Congalton, R. G. (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sensing of Environment, 29(2), 147-159. doi:10.1016/0034-4257(89)90023-0CHUVIECO, E., & SALAS, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International journal of geographical information systems, 10(3), 333-345. doi:10.1080/02693799608902082Chuvieco, E., Riaño, D., Aguado, I., & Cocero, D. (2002). Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. International Journal of Remote Sensing, 23(11), 2145-2162. doi:10.1080/01431160110069818Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martı́nez-Vega, J., de la Riva, J., & Pérez, F. (2004). Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92(3), 322-331. doi:10.1016/j.rse.2004.01.019Cruz, M. G., Alexander, M. E., & Wakimoto, R. H. (2003). Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. International Journal of Wildland Fire, 12(1), 39. doi:10.1071/wf02024Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., … Prince, S. (2002). Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79(2-3), 305-319. doi:10.1016/s0034-4257(01)00281-4Erdody, T. L., & Moskal, L. M. (2010). Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment, 114(4), 725-737. doi:10.1016/j.rse.2009.11.002Falkowski, M. J., Gessler, P. E., Morgan, P., Hudak, A. T., & Smith, A. M. S. (2005). Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. Forest Ecology and Management, 217(2-3), 129-146. doi:10.1016/j.foreco.2005.06.013Flannigan, M. ., Stocks, B. ., & Wotton, B. . (2000). Climate change and forest fires. Science of The Total Environment, 262(3), 221-229. doi:10.1016/s0048-9697(00)00524-6García, M., Popescu, S., Riaño, D., Zhao, K., Neuenschwander, A., Agca, M., & Chuvieco, E. (2012). Characterization of canopy fuels using ICESat/GLAS data. Remote Sensing of Environment, 123, 81-89. doi:10.1016/j.rse.2012.03.018González-Olabarria, J.-R., Rodríguez, F., Fernández-Landa, A., & Mola-Yudego, B. (2012). Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282, 149-156. doi:10.1016/j.foreco.2012.06.056Hall, S. A., Burke, I. C., Box, D. O., Kaufmann, M. R., & Stoker, J. M. (2005). Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208(1-3), 189-209. doi:10.1016/j.foreco.2004.12.001Harding, D. J. (2005). ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters, 32(21). doi:10.1029/2005gl023471Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi:10.1016/j.jag.2010.09.010Höfle, B., Hollaus, M., & Hagenauer, J. (2012). Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 134-147. doi:10.1016/j.isprsjprs.2011.12.003HYDE, P., DUBAYAH, R., PETERSON, B., BLAIR, J., HOFTON, M., HUNSAKER, C., … WALKER, W. (2005). Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems. Remote Sensing of Environment, 96(3-4), 427-437. doi:10.1016/j.rse.2005.03.005Keane, R. E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 10(4), 301. doi:10.1071/wf01028Kim, Y., Yang, Z., Cohen, W. B., Pflugmacher, D., Lauver, C. L., & Vankat, J. L. (2009). Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing of Environment, 113(11), 2499-2510. doi:10.1016/j.rse.2009.07.010Koetz, B., Morsdorf, F., Sun, G., Ranson, K. J., Itten, K., & Allgower, B. (2006). Inversion of a Lidar Waveform Model for Forest Biophysical Parameter Estimation. IEEE Geoscience and Remote Sensing Letters, 3(1), 49-53. doi:10.1109/lgrs.2005.856706Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., & Harding, D. (1999). Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sensing of Environment, 70(3), 339-361. doi:10.1016/s0034-4257(99)00052-8Listopad, C. M. C. S., Drake, J. B., Masters, R. E., & Weishampel, J. F. (2011). Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots. Remote Sensing, 3(7), 1284-1307. doi:10.3390/rs3071284Mallet, C., & Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 1-16. doi:10.1016/j.isprsjprs.2008.09.007Morsdorf, F., Meier, E., Kötz, B., Itten, K. I., Dobbertin, M., & Allgöwer, B. (2004). LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment, 92(3), 353-362. doi:10.1016/j.rse.2004.05.013Neuenschwander, A. L. (2009). Landcover classification of small-footprint, full-waveform lidar data. Journal of Applied Remote Sensing, 3(1), 033544. doi:10.1117/1.3229944Reich, R. M., Lundquist, J. E., & Bravo, V. A. (2004). Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire, 13(1), 119. doi:10.1071/wf02049Reitberger, J., Krzystek, P., & Stilla, U. (2008). Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. International Journal of Remote Sensing, 29(5), 1407-1431. doi:10.1080/01431160701736448Riaño, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., & Bastarrika, A. (2002). Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 32(8), 1301-1315. doi:10.1139/x02-052Riaño, D. (2003). Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment, 86(2), 177-186. doi:10.1016/s0034-4257(03)00098-1Riaño, D., Chuvieco, E., Condés, S., González-Matesanz, J., & Ustin, S. L. (2004). Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment, 92(3), 345-352. doi:10.1016/j.rse.2003.12.014Riaño, D., Chuvieco, E., Ustin, S. L., Salas, J., Rodríguez-Pérez, J. R., Ribeiro, L. M., … Fernández, H. (2007). Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire, 16(3), 341. doi:10.1071/wf06003SKOWRONSKI, N., CLARK, K., NELSON, R., HOM, J., & PATTERSON, M. (2007). Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sensing of Environment, 108(2), 123-129. doi:10.1016/j.rse.2006.09.032Skowronski, N. S., Clark, K. L., Duveneck, M., & Hom, J. (2011). Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment, 115(2), 703-714. doi:10.1016/j.rse.2010.10.012Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4Vaughn, N. R., Moskal, L. M., & Turnblom, E. C. (2012). Tree Species Detection Accuracies Using Discrete Point Lidar and Airborne Waveform Lidar. Remote Sensing, 4(2), 377-403. doi:10.3390/rs4020377Wagner, W., Hollaus, M., Briese, C., & Ducic, V. (2008). 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners. International Journal of Remote Sensing, 29(5), 1433-1452. doi:10.1080/01431160701736398Wilson, B. A., Ow, C. F. Y., Heathcott, M., Milne, D., McCaffrey, T. M., Ghitter, G., & Franklin, S. E. (1994). Landsat MSS Classification of Fire Fuel Types in Wood Buffalo National Park, Northern Canada. Global Ecology and Biogeography Letters, 4(2), 33. doi:10.2307/2997751Zhao, K., Popescu, S., Meng, X., Pang, Y., & Agca, M. (2011). Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment, 115(8), 1978-1996. doi:10.1016/j.rse.2011.04.00

    A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS

    A BiomeBGC-based Evaluation of Dryness Stress of Central European Forests

    No full text
    Dryness stress is expected to become a more common problem in central European forests due to the predicted regional climate change. Forest management has to adapt to climate change in time and think ahead several decades in decisions on which tree species to plant at which locations. The summer of 2003 was the most severe dryness event in recent time, but more periods like this are expected. Since forests on different sites react quite differently to drought conditions, we used the process-based growth model BiomeBGC and climate time series from sites all over Germany to simulate the reaction of deciduous and coniferous tree stands in different characteristics of drought stress. Times with exceptionally high values of water vapour pressure deficit coincided with negative modelled values of net primary production (NPP). In addition, in these warmest periods the usually positive relationship between temperature and NPP was inversed, i.e., under stress conditions, more sunlight does not lead to more photosynthesis but to stomatal closure and reduced productivity. Thus we took negative NPP as an indicator for drought stress. In most regions, 2003 was the year with the most intense stress, but the results were quite variable regionally. We used the Modis MOD17 gross and net primary production product time series and MOD12 land cover classification to validate the spatial patterns observed in the model runs and found good agreement between modelled and observed behaviour. Thus, BiomeBGC simulations with realistic site parameterization and climate data in combination with species- and variety-specific ecophysiological constants can be used to assist in decisions on which trees to plant on a given site
    corecore